
University of Algiers 1
Faculty of Sciences
Department of Computer Science

Final Exam L2-ADO
29-jan-2025

 Duration : 90 minutes
Surname:
First name:
Group:
Student ID No:

/ 20

Exercise 1: (6 points)
A system has a main memory of 16 megabytes and a 32 kilobytes direct-mapped cache with 8 bytes per block.

1/ How many lines are there in the cache memory?
(32*1024 bytes / cache)/(8 bytes/block) = 4*1024 blocks

2/ Show how the main memory address is decomposed (i.e. give the widths of the T/I/O fields).

16 MB of bytes (224 = 16 MB) implies a 24-bits address is needed – From question 1/ we have 12 bits for the index
field (22210=212), a block of 8 bytes require 3 bits for the offset and we are left with 24-12-3 =9 bits for the tag

Assume a 2-way set associaƟve cache (i.e. there are two blocks per cache line). Assume also a 14-bit tag, 8 bits for
the set line, and 2 bits for the offset.

3/ How many blocks are contained in this cache?

 a) 8 b) 256 c) 512 d) 1024 e) 16K

There are eight bits identifying the set, thus there are 28 = 256 sets. Since there are two blocks per set, then there
are 2×256 = 512 blocks.

4/ How many blocks are there in RAM according to the cache system defined above?

a) 224 b) 222 c) 214 d) 28 e) Cannot be determined

222 blocks. Memory address width is 24 bits seen as block bits and offset bits. Taking out the 2 bits for the offset
id, we are left with 22 bits for addressing the blocks.

The Ɵming for a cache system is as follows: checking the cache requires 1 cycle. On a cache hit, the data is delivered
to the CPU by the end of the first cycle. On a cache miss, an addiƟonal 9 cycles are needed to fetch the word from
the main memory, storing it in the cache, and returning a copy to the CPU.

5/ To achieve an average memory access Ɵme (AMAT) of 1.4 cycles, what is the minimum cache hit raƟo required?

1.4 = 1+(1-hit ratio)*(9+1)
0.4 = (1-hit ratio)*10 >> minimum possible value of hit ratio is 0.96.

6/Consider a set-associaƟve cache of 2KB (1KB=210 bytes) with a cache block size of 64 bytes. Assume a 32-bit
address is used for accessing the cache. If the width of the tag field is 22 bits, the associaƟvity of the cache is __2__.

a) 1 b) 2 c) 4 d) 8 e) 16
offset bits: log2(64)=6 bits. index bits: 32-22-6 = 4 (16 total sets).
Total cache size 2KB divided into 16 sets we get 128 bytes per set. Each cache line has 64 bytes. So, it is a 2-set
associative

(1pt. missing details = no mark)

(1pt. missing details = no mark)

(1pt. wrong/missing details = -1pt)

(1pt. wrong/missing details = -1pt)

(1pt. missing details = no mark)

(1pt. wrong/missing details = -1pt)

Exercise 2: (8.5 points)

Consider the following MIPS code:

1: add $a0, $at, $0
2: sub $t1, $v1, $a0
3: add $a0, $a1, $a2
4: lw $v0, 100($v1)
5: lw $v0, 0($v0)
6: sw $v0, 100($a0)
7: and $v0, $v0, $at
8: beq $t1, $at, loop
9: and $t1, $t1, $at

1/ Fill in the table below assuming a "five-stage" pipelined data path with a “data forwarding unit”, “double-
pumping” and a “predicƟon unit” that assumes branches will not be taken. Indicate, if applicable, “data forwarding”
occurrences with arrows, “pipeline stalls” with “nop” bubbles, and double-pumping usage with circles (3.5 pts)

Inst. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

add $a0, $at, $0 IF ID EX MEM WB

sub $t1, $v1, $a0 IF ID EX MEM WB

add $a0, $a1, $a2 IF ID EX MEM WB

lw $v0, 100($v1) IF ID EX MEM WB

lw $v0, 0($v0) IF ID nop EX MEM WB

sw $v0, 100($a0) IF nop ID nop EX MEM WB

and $v0, $v0, $at IF nop ID EX MEM WB

beq $t1, $at, loop IF ID EX MEM WB

and $t1, $t1, $at IF ID EX MEM WB

2/ List all possible data hazards in the code (i.e. affected instrucƟons and registers)

between inst. 1 and 2 (1.rd = 2.rt = $a0)
between inst. 4 and 5 (4.rt = 5.rs = $v0)
between inst. 5 and 6 (5.rt = 6.rt = $v0)
between inst. 5 and 7 (5.rt = 7.rs = $v0) – Resolved by the double-pumping feature.

3/ Apply code rescheduling to reduce as much as possible the number of stalls

The stall on $v0 between instructions 4 and 5 can be eliminated if inst. 4 is scheduled before inst. 3 in the
pipeline. This gives: 1 , 2 , 4 , 3 , 5 , 6 , 7 , 8 , 9 (will eliminate a single stall between inst. 4 and 5). In fact, we need
to sandwich two statements between instructions 4, 5 and 6 in order to avoid stalling the pipeline. The new order
of execution would be: 1 , 4 , 2 , 5 , 3 , 6 , 7 , 8 , 9 (will remove all the stalls).

4/ Indicate which register values are forwarded when handling data hazards for the rescheduled code

$a0: inst. 1 -> inst. 3 (old inst. 2),
$v0: inst. 2 (old inst. 4) -> inst. 4 (old inst. 5),
$v0: inst. 4 (old inst. 5) -> (inst. 6).rt,
$a0: inst. 5 (old inst. 3) -> (inst. 6).rs

(1 pt. missing details = no mark)

(2 pts. missing details = no mark)

(2 pt. missing details = no mark)

Cycle

Exercise 3: (5.5 points)
a. Write in hexadecimals the machine codes associated with the following MIPS instrucƟons

1/ sllv $t3, $t1, $t0

R type. Op = 0, rt = 9 ($t1), rs = 8 ($t0), rd = 11 ($t3), sh = 0, func = 0x4 => 0x01095804
0.25pt … 0.5 pt … 0.25 pt (only if details are correct)

2/ jr $t2

R type. Op = 0, rs = 10 ($t2), rt = 0, rd = 0, sh = 0, func = 0x8 => 0x01400008
0.25pt … 0.5 pt … 0.25 pt (only if details are correct)

3/ andi $t2, $t1, 0x0671

I type. Op = 0xC, rt =10 ($t2), rs = 9 ($t1), Imm = 0x0671 => 0x312A0671
0.25pt … 0.5 pt … 0.25 pt (only if details are correct)

b. If the first statement below is located at memory address 0x4000, give the correct instrucƟon offset for the
following branch instrucƟons

A: beq $t0, $t1, C
B: beq $t1, $t2, C
C: beq $t2, $t3, A
D: beq $t3, $t4, C
E: beq $t4, $t5, E

A=0x4000 , B=0x4004 , C=0x4008 , D=0x400C , E=0x4010

beq $t0, $t1, C => (0x4008 - (0x4000 + 4)) / 4 = 1
beq $t1, $t2, C => (0x4008 - (0x4004 + 4)) / 4 = 0
beq $t2, $t3, A => (0x4000 - (0x4008 + 4)) / 4 = -3
beq $t3, $t4, C => (0x4008 - (0x400C + 4)) / 4 = -2
beq $t4, $t5, E => (0x4010 - (0x4010 + 4)) / 4 = -1
 … 0.25pt … 0.25pt (if details are correct)

(1 pt. missing details = no mark)

(1 pt. missing details = no mark)

(1 pt. missing details = no mark)

(2.5 pt. missing details = no mark)

