Computer Design Pipelining Hazards

Computer Science (2™ year B.Sc.) Seminar #7

1.

L1,

L2

1.3

1.4.

2.1

Pre-check

This section is designed as a check to help you determine whether you understand the
concepts covered in class. Please answer "true/false" to the following questions and include
an explanation.

Introducing “pipeline” registers to the Datapath induces higher latency and throughput in the
execution of instructions.

"Data hazards" typically result in three pipeline stalls if we don’t use the forwarding unit.

. All "data hazards" can be resolved using the “forwarding unit”.

Suspending the pipeline is the only way to resolve the "branch hazards."

. Pipeline Registers

To convert a single-cycle processor into a pipelined processor, registers are introduced
between the different stages of the data path. What is the role of these registers?

2.2. Why do we need to save the “control signals” multiple times in the pipeline?

3. Performance Analysis

Before continuing with the questions in this tutorial, please have a look at the document
"Timing Constraints for digital circuits" (available on the course website) for a quick note
on the time keywords (i.e. tsq, tpqa, --.) used here.

Let's assume the following time durations for our pipelined CPU:

tepq Tegister : 30ps setup TEGIStET : 20 ps
tpa Mux: 25ps |, tpa ALU: 200 ps
tepg Mem: 250 ps , tsetup MEM: 200 ps
tepq RegFile: 150 ps , tsetup RegFile: 20 ps

3.1. With the delays shown above for each of the Datapath components, what would be the fastest
possible clock time for a single-cycle Datapath?

3.2. What would be the fastest possible clock frequency for a pipelined data path?

3.3.

4.

4.1.

What is the speedup after converting the single-cycle Datapath to a pipelined Datapath? Why
is the speedup less than 5?

Execution hazards

Converting a single-cycle data path to a pipelined version introduces three types of execution
hazards: structural hazards, data hazards, and branch hazards.

Structural hazards

They occur when multiple instructions need to use the same resource in the data path at the
same time. There are two main causes of structural hazards:

RegFile Access: The "registers file" is accessed both during the ID stage, when it is read, and
during the WB stage, when it is modified (i.e. written to). This problem is solved by having
separate read and write ports. In the case of simultaneous reading and writing to the same
register, one writes to the register during the first half of the clock cycle and reads from it
during the second half. This is also known as "double pumping."

Memory Access: Memory holds both the instructions of the program to be executed
(accessed during the IF stage) and the data to be processed (required during the MEM stage).
Having a separate instruction memory (IMEM) and data memory (DMEM) resolve the
problem of simultaneous access to this resource by different instructions in the pipeline. This
design is based on an old architecture called "Harvard architecture" and is implemented today
by using separate memory caches for instructions and data (cf. the lecture on memory
caches).

& Structural hazards can always be solved by adding more hardware components.

Data hazards

These hazards are caused by data dependencies between instructions. In particular, a data
hazard occurs when an instruction reads from a register before a previous instruction has
finished writing to that register.

Forwarding Unit
Most data hazards can be resolved by “forwarding”, i.e. when the output of the EX stage or
the MEM stage is forwarded to the EX stage of the subsequent instruction.

Point out the data hazards in the code below and indicate how data forwarding could be used
to resolve them.

Instmctionscydes c1 | c2 | 3| ca | o5 | c6 | 7
1. addi $te, $a@, -1 IF D EX | MEM | WB
2. and $s2, $to, %$a0 IF ID EX MEM WB
3. sltiu $a0, $tO, 5 IF D EX | MEM | wB

4.2. How many instructions after an addi statement could be affected by data hazards related to

that statement?

Pipeline suspension

4.3. Identify the data hazards in the code below. Why can't one of these hazards be resolved with
the forwarding unit? What can we do to resolve this issue?

Instmcﬁongydes ci | 2| 3| ca| s | c6 | c7| cs
1. addi $s0, $s@, 1 | IF D EX | MEM | WB
2. addi $te, $to, 4 IF D EX | MEM | WB
3. 1w $t1, 0($t0) IF D EX | MEM | WB
4. add $t2, $t1, $e IF D EX | MEM | WB

44. In a team of engineers, you are working on the design of a compiler for a MIPS processor
(remember, it is the compiler that produces assembly language files). How could this
compiler reorganise the instructions in Exercise 4.3 to minimise data hazards while ensuring

the same result.

45.

4.6.

Data Hazard Detection

Suppose we have the signals rs, rt, RegWEn, and rd for two instructions at times 7 and 7 + 1.
We want to check if there is a data hazard between these statements. In this sense, we can
verify whether the rd of the instruction at time 7 matches rs or rt of the instruction at time
¢t + 1, thereby indicating a data hazard. We could then use this detection to decide which data
to forward (i.e. from EX/MEM or MEM/WB) or the hold period (if any) to apply to ensure correct
execution of the instructions. In pseudocode, this gives:

if (rs(n + 1) == rd(n) || rt(n + 1) == rd(n) && RegWEn(n) == 1) {
/* forward the output of the ALU of inst. n to inst. n+1 */
5

Branch hazards

Branch hazards are caused by branch instructions. Indeed, in a sequential execution without
branching, the next instruction to execute is located at the address given by PC + 4. In the
case of branch instructions, the next PC is not PC + 4, but will be the result of the calculation
performed during the EX stage. A possible solution to this problem is to suspend the pipeline
during a branch hazard, but this will negatively impact performance.

Besides suspending the pipeline, what can we do to resolve branch hazards?

How many execution hazards would there be in the MIPS code below if it were executed in a
pipelined processor without a forwarding unit? What is the type of each “execution hazard”?
(Examine all possible instruction pairs for possible hazards).

How many times should the pipeline be stalled to resolve possible data hazards? What about
branch hazards?

Instmctioggdes ci|c2|c3| ca| s | os | 7| sl co
1. sub $t1, $s0, 1| IF D EX | MEM | WB
2. or $s0, $to, $t1 IF ID EX | MEM | WB
3. sw $s1, 100($s0) IF D EX | MEM | WB
4. beq $s9, $s2, L1 IF ID EX MEM | WB
5. add $t2, $0, $0 IF ID EX | MEM | WB

