
Computer Design 

Computer Science (2nd year B.Sc.)  

Pipelining Hazards 

Seminar #7   

1. Pre-check 

This section is designed as a check to help you determine whether you understand the 

concepts covered in class. Please answer "true/false" to the following questions and include 

an explanation. 

1.1. Introducing “pipeline” registers to the Datapath induces higher latency and throughput in the 

execution of instructions.  

TRUE! Latency is the time it takes for an instruction to complete, while throughput is the 

number of instructions processed per unit of time. The introduction of pipelining in a 

processor results in higher throughput because more instructions are executed at once. 

Latency is also higher because each individual instruction takes longer from start to finish.  

 

1.2. "Data hazards" typically result in three pipeline stalls if we don’t use the forwarding unit. 

TRUE! The next instruction must wait for the preceding instruction to complete the EX, 

MEM, and WB stages before it can use the EX stage of the pipeline.  

 

1.3. All "data hazards" can be resolved using the “forwarding unit”. 

FALSE! The hazards that may arise following a read instruction (i.e. lw, ...) cannot be 

completely resolved with the “forwarding unit” because the data is only known at the MEM 

stage. Therefore, a stall will occur in this case. 

 

1.4. Suspending the pipeline is the only way to resolve the "branch hazards." 

FALSE! Pipeline suspension is one way to resolve branch hazards. Other more advanced 

techniques attempt to predict the path the instruction will take after a branch instruction and 

flush the pipeline if the prediction turns out to be wrong. 

2. Pipeline Registers  

2.1. To convert a single-cycle processor into a pipelined processor, registers are introduced 

between the different stages of the data path. What is the role of these registers?  

In a pipelined data path, the values for each stage must be passed at each clock cycle. Each 

stage of the pipeline only operates on a small set of values, but those values must be correct 

for the instruction being processed. Consider the load instruction "lw": if the instruction is in 

the EX stage, then the values in that stage should look like the values of the EX stage in a 

single-cycle data path (i.e. the values of the rs and rt bit fields as well as the immediate 

"imm" must be as if the "lw" instruction was the only executing instruction in the entire path).  



This also includes “the control signals”: Indeed, the appropriate control signals are generated 

during the “instruction decoding” stage and to ensure that each stage has the correct signals 

for its execution, these signals must be passed through the pipeline registers too. 

 

2.2. Why do we need to save the “control signals” multiple times in the pipeline? 

Because each pipeline stage must receive the correct control signals for the instruction 

currently at that stage. 

3. Performance Analysis 

Before continuing with the questions in this tutorial, please have a look at the document 

"Timing Constraints for digital circuits" (available on the course website) for a quick note 

on the time keywords (i.e. 𝑡𝑐𝑝𝑞, 𝑡𝑝𝑑, …) used here.  

Let's assume the following time durations for our pipelined CPU: 

𝑡𝑐𝑝𝑞 register : 30 ps , 𝑡𝑠𝑒𝑡𝑢𝑝 register : 20 ps 

𝑡𝑝𝑑 Mux: 25 ps , 𝑡𝑝𝑑 ALU: 200 ps 

𝑡𝑐𝑝𝑞 Mem: 250 ps , 𝑡𝑠𝑒𝑡𝑢𝑝 MEM: 200 ps 

𝑡𝑐𝑝𝑞 RegFile: 150 ps , 𝑡𝑠𝑒𝑡𝑢𝑝 RegFile: 20 ps 

3.1. With the delays shown above for each of the Datapath components, what would be the fastest 

possible clock time for a single-cycle Datapath? 

𝑇𝑐 ≥ 𝑡𝑐𝑝𝑞(𝑃𝐶) + 𝑡𝑐𝑝𝑞(𝐼𝑀𝐸𝑀) + 𝑡𝑐𝑝𝑞(𝑅𝑒𝑔𝐹𝑖𝑙𝑒) + 𝑡𝑝𝑑(𝑀𝑢𝑥) 

+𝑡𝑝𝑑(𝐴𝐿𝑈) + 𝑡𝑐𝑝𝑞(𝐷𝑀𝐸𝑀) + 𝑡𝑝𝑑(𝑀𝑢𝑥) + 𝑡𝑠𝑒𝑡𝑢𝑝(𝑅𝑒𝑔𝐹𝑖𝑙𝑒) 

𝑇𝑐 ≥ 950𝑝𝑠 

𝑓𝑐 ≤
1

𝑇𝑐
≅ 1.05 𝐺𝐻𝑧 

 

Note that the Mux delay before the "Registers File" is omitted here because in the case of a 

load instruction (i.e. our critical path), the output of this component is required much later in 

the data path (i.e. after WB). This leaves plenty of time for the output of this Mux to stabilise 

for the "Write Register" input of the "Registers File ".  

 

3.2. What would be the fastest possible clock frequency for a pipelined data path? 

IF : 𝑡𝑐𝑝𝑞(𝑃𝐶) + 𝑡𝑐𝑝𝑞(𝐼𝑀𝐸𝑀) + 𝑡𝑠𝑒𝑡𝑢𝑝(𝑅𝑒𝑔𝑠_𝐼𝐹: 𝐼𝐷) = 300 𝑝𝑠  

ID : 𝑡𝑐𝑝𝑞(𝑅𝑒𝑔𝑠_𝐼𝐹: 𝐼𝐷) + 𝑡𝑐𝑝𝑞(𝑅𝑒𝑔𝐹𝑖𝑙𝑒) + 𝑡𝑠𝑒𝑡𝑢𝑝(𝑅𝑒𝑔𝑠_𝐼𝐷: 𝐸𝑋) = 200 𝑝𝑠  

EX : 𝑡𝑐𝑝𝑞(𝑅𝑒𝑔𝑠_𝐼𝐷: 𝐸𝑋) + 𝑡𝑝𝑑(𝑀𝑢𝑥) + 𝑡𝑝𝑑(𝑈𝐴𝐿) + 𝑡𝑠𝑒𝑡𝑢𝑝(𝑅𝑒𝑔𝑠_𝐸𝑋: 𝑀𝐸𝑀) = 275 𝑝𝑠  

MEM : 𝑡𝑐𝑝𝑞(𝑅𝑒𝑔𝑠_𝐸𝑋: 𝑀𝐸𝑀) + 𝑡𝑐𝑝𝑞(𝐷𝑀𝐸𝑀) + 𝑡𝑠𝑒𝑡𝑢𝑝(𝑅𝑒𝑔𝑠_𝑀𝐸𝑀: 𝑊𝐵) = 300 𝑝𝑠  

WB : 𝑡𝑐𝑝𝑞(𝑅𝑒𝑔𝑠_𝑀𝐸𝑀: 𝑊𝐵) + 𝑡𝑝𝑑(𝑀𝑢𝑥) + 𝑡𝑠𝑒𝑡𝑢𝑝(𝑅𝑒𝑔𝐹𝑖𝑙𝑒) = 75 𝑝𝑠  

 

𝑚𝑎𝑥(𝐼𝐹, 𝐼𝐷, 𝐸𝑋, 𝑀𝐸𝑀, 𝑊𝐵)  =  300 𝑝𝑠     𝑓𝑐 =
1

300 𝑝𝑠
≅ 3.33 𝐺𝐻𝑧 



3.3. What is the speedup after converting the single-cycle Datapath to a pipelined Datapath? Why 

is the speedup less than 5? 

A speedup of 
950 𝑝𝑠

300 𝑝𝑠
 ≅  3.17 times. The speedup is less than 5 because the transfer registers 

(i.e. the pipeline registers) introduce additional delays (𝑡𝑐𝑝𝑞 and 𝑡𝑠𝑒𝑡𝑢𝑝) to the Datapath. On 

the other hand, it is necessary to set the clock to the maximum time required among the five 

stages. 

 

Note: Resolving potential hazards require additional circuitry that would further impact the 

speedup. 

4. Execution hazards 

Converting a single-cycle data path to a pipelined version introduces three types of execution 

hazards: structural hazards, data hazards, and branch hazards. 

Structural hazards 
They occur when multiple instructions need to use the same resource in the data path at the 

same time. There are two main causes of structural hazards: 

RegFile Access: The "registers file" is accessed both during the ID stage, when it is read, and 

during the WB stage, when it is modified (i.e. written to). This problem is solved by having 

separate read and write ports. In the case of simultaneous reading and writing to the same 

register, one writes to the register during the first half of the clock cycle and reads from it 

during the second half. This is also known as "double pumping." 

Memory Access: Memory holds both the instructions of the program to be executed 

(accessed during the IF stage) and the data to be processed (required during the MEM stage). 

Having a separate instruction memory (IMEM) and data memory (DMEM) resolve the 

problem of simultaneous access to this resource by different instructions in the pipeline. This 

design is based on an old architecture called "Harvard architecture" and is implemented today 

by using separate memory caches for instructions and data (cf. the lecture on memory 

caches). 

 Structural hazards can always be solved by adding more hardware components. 

Data hazards 
These hazards are caused by data dependencies between instructions. In particular, a data 

hazard occurs when an instruction reads from a register before a previous instruction has 

finished writing to that register. 

Forwarding Unit 

Most data hazards can be resolved by “forwarding”, i.e. when the output of the EX stage or 

the MEM stage is forwarded to the EX stage of the subsequent instruction. 

4.1. Point out the data hazards in the code below and indicate how data forwarding could be used 

to resolve them. 

 



         Cycles 

   Instructions 
C1 C2 C3 C4 C5 C6 C7 

1. addi $t0, $a0, -1 IF ID EX MEM WB   

2. and $s2, $t0, $a0  IF ID EX MEM WB  

3. sltiu $a0, $t0, 5   IF ID EX MEM WB 

 

There are two data hazards: Between instructions 1 and 2 and between instructions 1 and 3. 

The first hazard could be solved by forwarding the result of the EX stage in C3 to the input of 

the EX stage in C4. The second hazard could be solved by forwarding the result of the EX 

stage in C3 to the beginning of the EX stage in C5. 

4.2. How many instructions after an addi statement could be affected by data hazards related to 

that statement? 

Three instructions. Consider instruction 1 in question 4.1. Any subsequent statement that 

would read register $t0 (i.e. during the ID stage) in the C3, C4, or C5 clock cycles will not 

have the correct value of $t0 because the addi statement will only update it in cycle C5. If, 

however, the Regfile registers possess the “double pumping” feature, then only two 

instructions will be affected because the ID stage of instruction 4 could be executed at the 

same time as the WB stage of instruction 1. 

Pipeline suspension 

4.3. Identify the data hazards in the code below. Why can't one of these hazards be resolved with 

the forwarding unit? What can we do to resolve this issue? 

 

         Cycles 

   Instructions 
C1 C2 C3 C4 C5 C6 C7 C8 

1. addi $s0, $s0, 1 IF ID EX MEM WB    

2. addi $t0, $t0, 4  IF ID EX MEM WB   

3. lw $t1, 0($t0)   IF ID EX MEM WB  

4. add $t2, $t1, $0    IF ID EX MEM WB 

 

There are two data hazards in this code. The first hazard lies between statements 2 and 3 

(register $t0), and the second between statements 3 and 4 (register $t1). The hazard between 

statements 2 and 3 can be solved with the forwarding unit, but the problem between 

statements 3 and 4 cannot be solved with this unit (only). Indeed, even if the forwarding unit 

is used, instruction 4 needs the result of instruction 3 at the beginning of cycle C6, but the 

value of $t1 will only be available at the end of this cycle.  

We can solve this problem by inserting a bubble into the pipeline between statements 3 and 4 

(i.e., a no-operation (nop) instruction). 

4.4. In a team of engineers, you are working on the design of a compiler for a MIPS processor 

(remember, it is the compiler that produces assembly language files). How could this 

compiler reorganise the instructions in Exercise 4.3 to minimise data hazards while ensuring 

the same result. 

Because instruction 1 has no dependencies, rearrange the instructions as follows: 2–3–1–4.  



Data Hazard Detection 

Suppose we have the signals rs, rt, RegWEn, and rd for two instructions at times t and t + 1. 

We want to check if there is a data hazard between these statements. In this sense, we can 

verify whether the rd of the instruction at time t matches rs or rt of the instruction at time  

t + 1, thereby indicating a data hazard. We could then use this detection to decide which data 

to forward (i.e. from EX/MEM or MEM/WB) or the hold period (if any) to apply to ensure correct 

execution of the instructions. In pseudocode, this gives: 

if (rs(n + 1) == rd(n) || rt(n + 1) == rd(n) && RegWEn(n) == 1) { 
 /* forward the output of the ALU of inst. n to inst. n+1 */ 
} 

Branch hazards 
Branch hazards are caused by branch instructions. Indeed, in a sequential execution without 

branching, the next instruction to execute is located at the address given by PC + 4. In the 

case of branch instructions, the next PC is not PC + 4, but will be the result of the calculation 

performed during the EX stage. A possible solution to this problem is to suspend the pipeline 

during a branch hazard, but this will negatively impact performance.  

4.5. Besides suspending the pipeline, what can we do to resolve branch hazards? 

We can try to predict which direction the branch will go, and when that prediction is incorrect, 

we "flush" the pipeline and continue with the correct instructions. A simple (and naive) 

method of prediction is to assume that jumps in branch instructions are never made. 

4.6. How many execution hazards would there be in the MIPS code below if it were executed in a 

pipelined processor without a forwarding unit? What is the type of each “execution hazard”? 

(Examine all possible instruction pairs for possible hazards). 

 

How many times should the pipeline be stalled to resolve possible data hazards? What about 

branch hazards? 

 

         Cycles 

   Instructions 
C1 C2 C3 C4 C5 C6 C7 C8 C9 

1. sub $t1, $s0, 1 IF ID EX MEM WB     

2. or $s0, $t0, $t1  IF ID EX MEM WB    

3. sw $s1, 100($s0)   IF ID EX MEM WB   

4. beq $s0, $s2, L1    IF ID EX MEM WB  

5. add $t2, $0, $0     IF ID EX MEM WB 

 

We have four execution hazards: between statements 1 and 2 (data hazard on $t1), between 

statements 2 and 3 (data hazard on $s0), between instructions 2 and 4 (data hazard on $s0), 

and between statements 4 and 5 (branch hazard). 

Assuming that we can read and write to the "Registers File" during the same clock cycle (i.e. 

using the “double pumping” feature), two bubbles are needed between statements 1 and 2, 

and two more bubbles between statements 2 and 3. No bubble is required for the branch 

hazard because it can be handled with branch prediction / pipeline flushing. 


