
Computer Design 

Computer Science (2nd year B.Sc.) 

Pseudo-assembly instructions and 

memory addressing in MIPS 

Seminar #5   

1. Pre-check 

This section is designed as a check to help you determine whether you understand the 

concepts covered in class (cf. P&H 2.12, A.1 – A.4). Please answer "true/false" to the 

following questions and include an explanation. 

1.1. High-level language compilers (Fortran, C, ...) may generate pseudo-assembly instructions. 

TRUE! It is the Assembler tool that must transform the pseudo-instructions into real 

instructions that conform to the ISA of the target processor.  

 

1.2. The main purpose of the Assembler tool is to generate optimized machine code. 

FALSE! This is the function of the compiler. The assembler is primarily responsible for 

translating pseudo-instructions into actual ISA instructions and calculating relative addresses 

and offsets for jump and branch instructions.  

 

1.3. Destination addresses of all jump instructions are completely determined after linking. 

FALSE! Register-related jumps (i.e., from instructions like jr and jalr) are only known at 

runtime (i.e. when the program is executed). 

2. Assembling a program 

2.1. How many passes in the source text should the Assembler tool make and why?  

Twice. The first pass encodes simple instructions and determines the addresses of all the 

labels in the program. The second pass is used to encode instructions containing forward 

references in the program.  

 

2.2. Describe the six main parts of assembler-generated object file (Header, Text, Data, 

Relocation Table, Symbol Table, Debug Information). 

• Header: The sizes and positions of the other parts of the object file. 

• Text: The (almost complete) machine code 

• Data: The binary representation of the static data present in the source file.  

• Relocation Table: Identifies the lines of code that need to be handled by the linker 

(jumps to external labels, references to static data, ...). 

• Symbol Table: A list of referenced labels and data (i.e. globally accessible) in the 

source files. 

• Debug information: Additional information used by debuggers. 



3. MIPS assembler 

Consider a C program that contains a single sum function that computes the sum of the 

elements in an array. Below is a compiled version of this program in MIPS. 

1 .import print.s     # print.s is an external file   

2 .data 

3  array:  .word 1,2,3,4 
4 .text 

5  sum:  la   $t0, array 

6    li   $t1, 4 

7    move $t2, $0 

8  loop:  beq  $t1, $0, end 

9     addi $t1, $t1, -1 

10    sll  $t3, $t1, 2 

11    add  $t3, $t0, $t3 

12    lw   $t3, 0($t3) 

13    add  $t2, $t2, $t3 

14    j    loop 

15 end:  move $a0, $t2 
16    jal  print_int  # function defined in print.s 

17   ... 

3.1. Which lines contain pseudo-instructions that the assembler should convert to actual MIPS 

instructions (i.e. ISA instructions)? 

5, 6, 7 and 15. The pseudo instruction "la " is translated into two instructions: "lui" and 

"ori". "li " in 6 becomes an "addi" instruction, and "move" in 7 and 15 is converted to an  

"add" instruction. 

3.2. For branch/jump instructions, which labels will be resolved on the first pass of the assembler? 

and which others in the second pass? 

The jump to "loop" will be resolved in the first pass because the label is defined (line 8) 

before it is referenced (line 14). The "end" label, on the other hand, will be resolved (line 8) 

in a second pass of the assembler because it is defined later in the program (line 15). The first 

pass will have made it possible to identify where this late reference is located. The "print_int" 

label (on line 16) refers to a symbol in another file, and will in this case be resolved by the 

linker. 

3.3. Suppose the machine code for this program, once loaded into memory, starts at address 

0x00400000. Why is there a jump of 8 between the first and second line? 

0x00400000:  sum:  la   $t0, array 

0x00400008:    li   $t1, 4 
0x0040000C:    move $t2, $0 

0x00400010:  loop:  beq  $t1, $0, end 

0x00400014:    addi $t1, $t1, -1 

0x00400018:     sll  $t3, $t1, 2 

0x0040001C:    add  $t3, $t0, $t3 



0x00400020:    lw   $t3, 0($t3) 

0x00400024:    add  $t2, $t2, $t3 

0x00400028:    j    loop 
0x0040002C:  end:  move $a0, $t2 

0x00400030:    jal  print_int  

There is a jump of 8 because "la" is a pseudo-instruction that translates into two regular 

MIPS instructions (see answer to question 3.1)! 

3.4. Give the Symbol Table once the Assembler tool has made all its passes. 

Label Address 

sum 0x00400000 

loop 0x00400010 

end 0x0040002C 

Including the loop and end labels in the symbol table is a perfectly valid answer if using an 

assembler alone, as it would have no way of telling the difference between the three labels. In 

reality, however, we very often use tools that integrate a compiler, an assembler and a linker 

at the same time to produce object/executable files (e.g. gcc). This kind of tools will be able 

to determine from the compilation phase which labels are for functions and which are not. As 

such, it will only put function labels in the symbol table since those are the only ones that 

other files can reference. 

4. Memory Addressing in MIPS 

There are several addressing modes for accessing memory in MIPS: 

▪ Register mode: the address is contained in the register. e.g. "jr $ra" 

▪ Indexed: The target address is computed from a base address contained in a register to 

which an offset value is added. e.g. « lw $a1, 0($s0) » , « sb $t1, 3($a0) » . 

▪ PC Indexed: Uses the $pc (actually $pc + 4) to which an immediate (multiplied by 4) is 

added to create the target address. This mode is used by instructions like beq and bne. 

The immediate in this type of instructions encodes the number of instructions to jump 

(positive values for forward jumps and negative values for backward jumps). 

▪ Pseudo-direct : The target address in this mode is obtained by concatenating the four 

MSB bits of the $pc register and the 26 bits [25:0] of the jump instruction (with two 

implicit LSB bits of 00 – can you tell why?). This mode is used by J-type instructions. 

4.1. An assembler tool you’re writing needs to encode jumps to addresses 228  +  4 bytes more 

than the current $pc. How to do it? For this question, the exact destination address is assumed 

to be known at compile time (Hint: you need several assembly instructions). 

J-type jump instructions can only reach addresses that have the same four MSB as the $pc. A 

jump of 228 + 4  bytes would require changing the $pc's fourth most significant bit. 

Therefore, a J-type jump instruction is not suitable here. We need to load the address into a 

register and use a “jr” instruction  

 



lui $at, { the upper 16 bits of the address } 

ori $at, $at, { the lower 16 bits of the address } 

jr $at 

4.2. You now need to write some MIPS instructions to encode branching (i.e. conditional jumps) 

to instructions 217  +  4 bytes higher than the current $pc. You may assume for this question 

that the jump address does not belong to a new 228 bytes block. 

The largest address a branch instruction can reach is $pc + 4 + SgnExt(Imm). Since the 

Immediate field for this type of instructions is 16 bits and signed, the furthest positive jump 

one can make is 215 − 1 words (i.e. 217 − 4 bytes). So we cannot use a simple branching 

instruction to encode jumps to addresses 217 + 4 bytes higher than the $pc. However, 

considering the assumption made on branching into the same 228 block of bytes, we can use 

a J-type jump instruction. Ex: to encode “beq $t0, $0, Foo” where Foo is 217 + 4 bytes 

further in memory: 

    bne $t0 , $0, DoNotBranch   

    j  Foo  
DoNotBranch:  ...     # next instruction of the program 

4.3. Consider the following MIPS instructions and their memory addresses. Give the machine 

code associated with each instruction by filling in the empty fields on the right (you will need 

your mips sheet!). Note: The OpCode fields are already pre-populated for you. 

0x002cff00: loop: addu $t0, $t0, $t0 | 0 |  8 |  8 |  8 |  0 |0x21 | 

0x002cff04:  jal foo | 3 |          0xc0001 | 

0x002cff08:  bne $t0, $0, loop | 5 | 0 | 8 | -3 = 0xfffd | 

⋮  ⋮   

0x00300004: foo: jr $ra # $ra =   0x002cff08  

 


