Computer Design Introduction to MIPS

Computer Science (2™ year B.Sc.) Seminar #4

1.

1.1.

1.2.

1.3.

1.4.

2.1.

Pre-Check

This section is designed as a check to help you determine whether you understand the
concepts covered in class. Please answer "true/false" to the following questions and include
an explanation.

After calling a function in MIPS, when this function returns, registers $te-$t9 may have been
modified during the execution of the function, but the values of registers $ve and $v1 will be
preserved.

If $ae is a pointer to the beginning of an array x, the MIPS instruction "1w $s0, 4($a0)" will
always load the value of x[1] in $se.

Assuming integers are 4 bytes wide, adding the ASCII character 'd' to the address of an array
of integers would point to the 26™ element of that array (assuming the array is large enough).

The MIPS instructions "j label" and "jal label" do exactly the same thing.

. Programming in MIPS

Consider the array (definition in C):
int arr[] = {2,2,3,4,5,6,0};

Suppose register $se contains the address of the element at index 0 in arr. Also assume that
the size of integers is 4 bytes. What do the following statements do in the MIPS code snippets
below (note that some code has errors)

lw $to, 12($s0)
add $t1, $to, $so
sw $to, 4($t1)

addiu $s1, $se, 27
1h $te, -3($s1)

addiu $s1, $se, 24
1h $te, -3($s1)

addiu $te, $o, 12
sw $to, 6($s0)

addiu $te, $o, 8
sw $to, -4($s0)

addiu $s1, $so, 10
addiu $te, $o, 6
sw $to, 2($s1)

In the above code snippets, what other instructions could be used instead of each "read
from/save to" memory to remove alignment errors? (Edit ONLY the problematic instruction).

3. C <> MIPS conversions

Convert instruction for instruction from (resp. to) C language to (resp. from) MIPS
Assembler.

C MIPS
// $s@ -> a, $s1 -> b
// $s2 -> c, $s3 -> z
inta=4, b =5, c =6, z;

zZz=a+b+ c+ 10;

// $s@ -> int *p = intArr;

// $s1 -> a;
*p = 0;
int a =

2;
p[1] = p[a] = a;

3.4.

// $s@ -> a, $s1 -> b
int a =5, b = 10;
if(a + a == b) {

a = 0;
¥
else
f
b=a-1;
¥

addi $so0, %0, o
addi $s1, $0, 1
addi $te, $0, 30
loop:
beq $s0, $to, exit
add $s1, $s1, $s1
addi $s0, $so, 1
j loop
exit:

// $s@ -> n, $s1 -> sum

// assume n is initially > ©

for(int sum = @; n > 9; n--) {
sum += n;

}

4. Arrays and Lists in MIPS

Consider the array (definition in C):
int arr[] = {3,1,4,1,5,9};

Assume the first element in this array is at memory address exBFFFFFee. Consider also the
following definition (in C) of a linked list (suppose that the first node of the linked list is
located at memory address @xABCD@@@®).

struct 11 {
int val;
struct 11* next;

}

struct 11* 1st;
Note that the next field of the last node in the list contains the value NuLL (i.e., the value 0).

Now suppose that register $se contains the address of arr (i.e. $s0 = @xBFFFFFe@); and that
register $s1 contains the address of the first node of the list 1st (i.e. $s1 = ©xABCD@@®O).
Finally, suppose that integers and pointers in our system are 4 bytes wide.

Indicate for each question below what the MIPS instruction block does (The code blocks in
the questions and their results are independent of each other).

&80, 1w $to, 0($s0)
1w $t1, 8($s0)
add $t2, $to, $t1
sw, $t2, 4($s09)

4.2. loop: beq $s1, $0, end
1w $t0, 0($s1)
addi $te, $te, 1
sw $t0, 0($s1)
1w $s1, 4(%$s1)
j loop
end:

4.3. add $to, $o, %o

loop: slti $t1, $to, 6
beq $t1, $0, end
sll $t2, $to, 2
add $t3, $so, $t2
1w $t4, o($t3)
sub $t4, %$0, $t4
sw $t4, o($t3)
addi $te, $to, 1
j loop

end:

5. Calling convention in MIPS

5.1. How can we pass arguments to functions in MIPS?

5.2. How are values returned by functions in MIPS?

5.3. What is $sp and how should it be used in the context of MIPS functions?

5.4. If a function needs to preserve the values of some registers before calling another function,
which registers should the caller function save before the call and restore after the callee
function returns?

553,

5.6.

6.1.

6.2.

Which registers should the callee function preserve (i.e. restore to initial state) before returning
to the caller function?

In a bug-free program, which registers are guaranteed to be the same after a function call?
Which registers are not guaranteed to be the same?

MIPS functions

Implement in MIPS the sumSquare function that computes the sum below
n+m-—12+m—-2)%+--+12

Where n is a parameter passed to the function. If n is not positive then the function must

return zero.

Let's start by coding the body of the function (i.e. the summation of quadratures).

sumSquare:

Since sumSquare is a function, and since we must follow MIPS calling conventions, in which
register should the value of n be passed to this function? Which registers should be used for
computing quadratures and summation? And in which register(s) should we return the result?
On the other hand, we also need to make sure that when sumSquare returns, it does not
modify any registers that the calling function might use. Considering your answers to the
questions above, correct your code in 6.1 if necessary and add a prologue and epilogue to

sumSquare:

