
Computer Design

Computer Science (2nd year B.Sc.)

Memory and Pointers in C

Seminar #2

1. Pre-Check

This section is designed as a check to allow you to determine whether you understand the
concepts covered in class. Answer the following questions and include an explanation:

1.1. True or False: Parameter passing (i.e. when calling functions) is done by value in C.
TRUE! A copy of the actual arguments is passed to the respective formal arguments. If
passing by reference is desired, then one must pass the location (i.e. the address) of the
actual arguments (i.e. use pointers).

1.2. What is a pointer in C? What does it have in common with array structures?
A pointer is just a sequence of bits interpreted as a memory address. An array in C language
acts as a pointer to the first element of that array.

1.3. 1.3. If you try to dereference a variable that is not a pointer (i.e. prefix an asterisk to it), what
happens? What about when you release it (i.e. free(…))?
C will treat the bits of this variable as if it were a pointer and attempt to access the "pointed"
data. Your program will most likely exit with the “memory segfault” error. If you free a
variable that has been previously freed or not allocated, your program’s behaviour will be
undefined and exit with an "invalid free" error.

2. Data organisation in memory

Consider the data structure type defined below.

typedef struct _data {
 char name[13]; // first and last names
 unsigned short age; // in years, ex: 23
 char gender; // M: Male, F: Female
 int id[4]; // ex: 1994,408,10,7212
} data;

Suppose that an “employee” structure of type “data” is allocated at memory address
“0x8040” with the following initializations:

data employee = {
 .name = "Tintin Lupin",
 .age = 23,
 .gender = 'M',
 .id = {1994,408,10,7212}
};

2.1. If we consider that “sizeof(char) == 1, sizeof(short) == 2, and sizeof(int) == 4”, and
if we also consider a memory organization in “little-endian” mode, give the hexadecimal
representation of the bytes of the “employee” structure in memory.

Address Data (bytes)

0x8040 54 69 6E 74 69 6E 20 4C

0x8048 75 70 69 6E 00 - 17 00

0x8050 4D - - - CA 07 00 00

0x8058 98 01 00 00 0A 00 00 00

0x8060 2C 1C 00 00

2.2. The same question as before but using the "big-endian" mode this time.

Address Data (bytes)

0x8040 54 69 6E 74 69 6E 20 4C

0x8048 75 70 69 6E 00 - 00 17

0x8050 4D - - - 00 00 07 CA

0x8058 00 00 01 98 00 00 00 0A

0x8060 00 00 1C 2C

Remember that, for performance reasons (we will see later in the course) data is (always)
stored at memory addresses that are multiple of their sizes. On the other hand, a C string is
always terminated with an implicit zero – don't forget to count it when you allocate memory
space for the string!

3. Memory in C

The C language is syntactically very similar to Java, but there are some key differences:

 C is "function-oriented" not "object-oriented". So, there are no objects.

 There is no “garbage collector” or automatic memory management in the C language.
Dynamic memory allocations and releases are explicitly managed by the programmer (i.e.
using malloc(), …, free()).

 Pointers are used explicitly in the C language. If "p" is a pointer, then "*p" indicates (i.e.
points to) the data to be used and not the value of "p" (i.e. the memory address). If "x" is
a variable, then "&x" returns the address (i.e. a pointer) of "x" and not the value of "x".

Below, on the left, a computer memory is represented by a box-and-pointer diagram. The
addresses were chosen arbitrarily.

0xFFFFFFFF 0xFFFFFFFF

 ⋮ ⋮

0xF93209B0 0xAD0 0xF93209B0 0xAD0

0xF93209AC 0x7C 0xF93209AC 0x7C

 ⋮ ⋮

0xF9320904 p 0xF9320904 0xF93209AC

0xF9320900 pp 0xF9320900 0xF9320904

 ⋮ ⋮

0x00000000 0x00000000

Assume a pointer to an integer (i.e. int* p) is allocated at address 0xF9320904. Let's also
assume an integer variable (i.e. int x) being allocated at address 0xF93209B0. From the left
diagram above, one can verify:

 *p should return the value 0x7C.
 p is assigned the value 0xF93209AC (i.e. the address where the value 0x7C is stored).
 x contains the value 0xAD0.
 &x will return the value 0xF93209B0 (i.e. the address where “x” is stored).

Now assume a pointer to a pointer to an integer (i.e. int** pp) is allocated at address
0xF9320900 (see left diagram above).

3.1. What will be the value returned by pp? What about *pp? and **pp?
pp has value 0xF9320904. *pp will return 0xF93209AC, and **pp will give 0x7C.

3.2. Implement the swap() function to exchange the values of two integers in memory

void swap(int* x, int* y) {
 int temp = *x;
 *x = *y;
 *y = temp;
}

3.3. Implement mystrlen() function that returns the number of bytes in a C string (similar to the
standard C library function strlen()).

int mystrlen(char* str) {
 int compte = 0;
 while(*str++) {
 compte++;
 }
 return compte;
}

Let the linked list “ll_node” defined as below. Assume as well that argument “lst” in
exercises 2.3 – 2.4 points to the first element of the linked list (i.e. the head of the list) or
contains NULL if the list is empty.

struct ll_node {
 int value;
 struct ll_node* next;
}

Note: The nodes are not necessarily contiguous in memory!

3.4. Write the code for inserting an item at the beginning of the linked list.

3.5. Implement the function release_ll to empty the entire list

void release_ll(struct ll_node * lst) {
// recursive solution
 if(lst != NULL) {
 release_ll(lst->next);
 free(lst);
 }

}

4. Beware of pointers

4.1. Something is wrong with the C code below! Can you spot the problem?

1 int* get_money(int cash) {
2 int* money = malloc(2017 * sizeof(int));
3 if(!cash)
4 money = malloc(1 * sizeof(int)); // “memory leak” if !cash
5 return money;
6 }

void insert (struct ll_node** lst, int val) {
 struct ll_node* elem = (struct ll_node*) malloc(sizeof(struct ll_node));
 elem->value = val;
 elem->next = *lst;
 *lst = elem;
}

// or an iterative solution
 while (lst) {
 struct ll_node *temp = lst->next;
 free(lst);
 lst = temp;
 }

Review the following functions and fix any problems

4.2. Return the total of all elements in the array summands

1 int sum(int* summands) { // int sum(int* summands, unsigned int n) {
2 int _sum = 0;
3 for(int i = 0; i <sizeof(summands); i++) // for(int i = 0; i < n; i++)
4 _sum += *(summands + i);
5 return _sum;
6 }

4.3. Increment the characters of the string stored at the beginning of an array of bytes of length
n >= strlen(string). MUST NOT modify memory areas outside the character string.

1 void increment(char* string, int n) { // parameter n is not needed
2 for(int i = 0; i < n; i++) // for(int i = 0; string[i] != 0; i++)
3 *(string + i)++; // string[i]++;
4 // ou (*(string + i))++;
5 }

4.4. Copying the string src into dst.

1 void copy(char* src, char* dst) {
2 while(*dst++ = *src++);
3 // there are no errors in this code
4 }

4.5. Replace, if there is enough space in a character string given as a parameter, with the
string "This course is fantastic!". The function should do nothing if the condition is not
true.. You may assume that parameter length gives the correct length of the src string.

1 void ado(char* src, unsigned int length) {
2 char *srcptr, replacteptr; // char *srcptr, *replaceptr;
3 char remplacement[26] = "This course is fantastic!";
4 srcptr = src ;
5 replaceptr = replacement;
6 if(length >= 26) {
7 for(int i=0; i<26; i++)
8 *srcptr++ = *replaceptr++;
9 }
10 }

