
Computer Design

Computer Science (2nd year B.Sc.)

Data Representation

Seminar #1

1. Check-up

This part is designed as a check-up to allow you to determine if you understand the concepts
already seen in “structures machine” (1st year). Please answer "True" or "False" to the
following questions and include an explanation:

1.1. Depending on the context, the same sequence of bits can represent different things.
TRUE! The same sequence of bits can be interpreted in different ways! This can represent an
unsigned or signed number or even something else like a character. It all depends on the
interpretation we give to this set.

1.2. In the two’s complement representation, it is possible to get an "overflow" error when adding
two numbers of opposite signs.
FALSE! "Overflow" errors occur only when the correct result of addition is outside the range
of [−2n−1, 2n−1−1], for an n-bit representation. Adding numbers of opposite signs will never
produce numbers outside this range.

1.3. If you interpret the negative numbers in the two’s complement representation as unsigned
integers, then the values of those numbers would be smaller than the positive integers.
FALSE! In the two’s complement representation, the most significant bit is always equal to 1
for a negative number. This means that all negative numbers will be larger than the positive
numbers in an unsigned representation.

2. Unsigned integers

An unsigned integer v can be written as the sum 𝑣 = ∑ 𝑏௜𝑑௜
௡ିଵ
௜ୀ଴ , where 0 ≤ 𝑑௜ < 𝑏 and b is

the base order. This mathematical notation simply means that to represent a given number in
a base b, we use the units 𝑏, 𝑏ଶ, .., etc. In the case of the binary, decimal and hexadecimal
bases, b will have the values 2, 10 and 16, respectively.

2.1. Convert the following numbers from their initial base to the other two bases. That is, If the
initial basis is a binary representation, then give the equivalent representations in decimal and
hexadecimal and so on.

a) (10010011)2 = (147)10 = (93)16

b) (63)10 = (0011 1111)2 = (3F)16

c) (00100100)2 = (36)10 = (24)16

d) (0)10 = (0)2 = (0)16

e) (39)10 = (0010 0111)2 = (27)16

f) (437)10 = (0001 1011 0101)2 = (1B5)16

g) (0123)16 = (0000 0001 0010 0011)2 = (291)10

2.2. Convert the following numbers from the hexadecimal representation to the equivalent binary
representation

a) (BAD)16 = (1011 1010 1101)2

b) (F00D)16 = (1111 0000 0000 1101)2

c) (FACE)16 = (1111 1010 1100 1110)2

d) (0FF)16 = (0000 1111 1111)2

3. Signed integers

In binary, the unsigned schema is not very well suited to represent, at the same time, positive
and negative numbers. In this sense, several schemes have been invented to represent signed
numbers, but we will limit ourselves to the two’s complement encoding method.

￭ The most significant bit in a two’s complement representation encodes a negative
number. All other bits encode a standard positive integer. Thus, the value of an n-digit
number in two’s complement can be written as: −2௡ିଵ𝑑௡ିଵ + ∑ 2௜𝑑௜

௡ିଶ
௜ୀ଴ .

￭ A trick to find the two’s complement of a number: Flip all bits and add 1.

￭ Addition in the two’s complement representation is performed in the same way as with
unsigned numbers.

￭ The number zero has a single representation in two’s complement: (000…0)2.

For questions 3.1 to 3.3, assume an 8-bit width and give your answers for both signed and
unsigned cases. If you feel that the question does not have an answer, then indicate this with a
“N/A” (meaning : Not Applicable).

3.1. What is the biggest integer? What will be the result if we add 1 to this number?

unsigned? 255 , 0

signed? 127 , -128

3.2. Give the encoding of the numbers (0) 10, (1) 10 and (-1)10

unsigned? (0000 0000)2 , (0000 0001)2 , N / A

signed? (0000 0000)2 , (0000 0001)2 , (1111 1111)2

3.3. Give the representations of the numbers (33)10 et (-33)10

unsigned? (0010 0001)2 , N / A

signed? (0010 0001)2 , (1101 1111)2

3.4. What is the smallest negative integer we can encode on 8 bits?

in binary? (1000 0000)2

in decimal? -128

3.5. In binary on 16 bits, what’s the encoding of the numbers (33)10 and (−33)10

a) (33)10 = (0000 0000 0010 0001)2

b) (-33)10 = (1111 1111 1101 1111)2

3.6. How do we move from an 8-bit representation to a 16-bit representation? Conversely, under
what conditions can we switch from a 16-bit representation to an 8-bit representation?

In two’s complement, to go from an 8-bit to a 16-bit representation we do a sign extension.
That is, bit 7 of the byte is replicated in positions 8 through 15 in the 16-bit representation.

To truncate a 16-bit representation to an 8-bit representation, bits 8 through 15 must be the
same as bit 7.

4. Arithmetic in binary

4.1. Still assuming 8-bit data width and the two’s complement encoding format, compute the
following additions and indicate the carry output. Give the decimal value of each result as
well:

a) 14 + 59 = (0100 1001)2 = (73)10 , carry = 0

b) 59 + 80 = (1000 1011)2 = (-117)10 , carry = 0

c) 59 + (-80) = (1110 1011)2 = (-21)10 , carry = 0

d) -59 + (-14) = (1011 0111)2 = (-73)10 , carry = 1

e) -59 + (-80) = (0111 0101)2 = (117)10 , carry = 1

f) 59 + (-59) = (0000 0000)2 = (0)10 , carry = 1

4.2. Some of the results obtained in the previous question are not as expected. What happened?
What simple test can be used to detect these errors?
We have an “overflow” in b) and e). In two’s complement representation, an overflow occurs
when we add two values with the same sign, but the obtained result has an opposite sign.
Thus, to detect an overflow, it is sufficient to compare the sign bits of the operands with that
of the result.

The carry bit indicates an "overflow" for UNSIGNED operations only.

5. Data encoding

What is the smallest number of bits required to represent the following range values using
any numerical encoding scheme (explain your answers!)

a) 0 to 256
n bits can be used to represent at most 2௡ distinct values. Thus, 8 bits can represent 2଼ =

256 values. However, the range 0 to 256 actually contains 257 numbers, so, we need 9 bits.

b) -7 to 56
Range of 64 numbers that can be encoded with 6 bits since 2଺ = 64.

c) 64 to 127
Here, 127 − 64 + 1 = 64 numbers to encode in total, so 6 bits.

d) -64 to -127
Same answer, 6 bits for 64 distinct values.

6. ASCII code

The American Standard Code for Information Interchange (ASCII) is a computer
standard for character encoding that appeared in the 1960s. This standard defines 128 7-bit
codes to represent characters that include synchronization codes (0 to 31), the digits 0 to 9,
the 26 letters of the Latin alphabet in lowercase and uppercase, and mathematical and
punctuation symbols (Figure below).

Bits
b6b5b4

000 001 010 011 100 101 110 111

b3b2b1b0

0000 (NUL) (DLE) (SP) 0 @ P ` p

0001 (SOH) (DC1) ! 1 A Q a q

0010 (STX) (DC2) " 2 B R b r

0011 (ETX) (DC3) # 3 C S c s

0100 (EOT) (DC4) $ 4 D T d t

0101 (ENQ) (NAK) % 5 E U e u

0110 (ACK) (SYN) & 6 F V f v

0111 (BEL) (ETB) ' 7 G W g w

1000 (BS) (CAN) (8 H X h x

1001 (HT) (EM)) 9 I Y i y

1010 (LF) (SUN) * : J Z j z

1011 (VT) (ESC) + ; K [k {

1100 (FF) (FS) , < L \ l |

1101 (CR) (GS) - = M] m }

1110 (SOH) (RS) . > N ^ n ~

1111 (SI) (US) / ? O _ o (DEL)

Figure 1. Table ASCII

6.1. From the table, give the 7-bit binary code of the characters 'a' and 'A'

‘a’ : (110 0001)2 , ‘A’ : (100 0001)2

6.2. Do the same for the character pairs ('b', 'B') and ('c', 'C'). What do you notice?

‘b’ : (110 0010)2 , ‘B’ : (100 0010)2 , ‘c’ : (110 0011)2 , ‘C’ : (100 0011)2

6.3. If an ASCII character represented a decimal digit, what value, in decimals, could the code of

this character be? How do you infer the decimal value represented by this character?
The decimal characters '0' to '9' are encoded with the values (011 0000)2 to (011 1001)2 in
binary. In decimal, this translates to the range of values from 48 to 57. To find the decimal
value associated with a decimal character, one solution is to subtract the value 48 from the
ASCII code of that character (what’s the other solution?).

